Baricentar 
Vrsta: Seminarski | Broj strana: 5 | Nivo: Matematički fakultet, Beograd

Koncept baricentra (težišta) prvi je uveo Arhimed iz Sirakuze u trećem veku pre nove ere. On je začetnik matematičkih tehnika koje su prve dovele do izračunavanja baricentara trougla, polusfere i eliptičkog paraboloida. Izučavanje baricentara je uveliko pomoglo da se razjasne razni problemi u astronomiji vezani za kretanje planeta u svojim sistemima, između ostalog i uticaj Meseca na Zemlju odnosno njeno kretanje u Sunčevom sistemu.
Masa Meseca, iako 81,3 puta manja od mase Zemlje, nije zanemarljiva. Ona deluje na Zemlju i zapravo Mesec ne kruži oko Zemlje, već Mesec i Zemlja osciliraju oko jedne zajedničke tačke, oko zajedničkog centra mase koji se zove baricentar. I zapravo tačka u kojoj se nalazi baricentar obilazi Sunce po eliptičnoj putanji dok centri Meseca i Zemlje osciliraju oko te tačke. Stoga ni putanja Meseca ni putanja Zemlje nemaju pravilan eliptični oblik.
Međutim masa Zemlje je ipak dosta veca od mase Meseca te se baricentar nalazi mnogo bliže centru mase Zemlje od koga je udaljen 4700 kilometara dok je odaljenost od centra mase Mecesa nesto manje od 400 000 kilometara.
Baricentri i afine baze
Ako je A bilo koji afini prostor nad poljem K, ekemente skupa EMBED Equation.3 zovemo i ponderisanim tačkama tog prostora A. Drugim rečima, to su svi parovi ( EMBED Equation.3 ), gde je A neka tačka iz A i EMBED Equation.3 neki skalar.
Za datu ponderisanu tačku ( EMBED Equation.3 ) odgovarajući skalar EMBED Equation.3 zovemo i koeficijentom ili masom, odnosno težinom same tačke A. Takođe, ako je S neki system od n ponderisanih tačaka, tada suma EMBED Equation.3 njihovih masa EMBED Equation.3 zovemo masom samog tog sistema S. Pri tom:
Tvrđenje 1. Za svakih n ponderisanih tačaka ( EMBED Equation.3 ),…,( EMBED Equation.3 ) u afinom prostoru A, čija ukupna masa EMBED Equation.3 nije 0, postoji tačno jedna tačka S za koju je
(1) EMBED Equation.3 .
Dokaz. Ako je O fiksirana tačka iz A, biće EMBED Equation.3 pa odmah sledi da je relacija (1) ekvivalentna sa
EMBED Equation.3 EMBED Equation.3 .
Štaviše, kako tu EMBED Equation.3 nije 0, time je ona ekvivalentna i sa
(2) EMBED Equation.3 .
Otuda i sama teorema , jer za datu tačku O i vektor EMBED Equation.3 na desnoj strain u (2) postoji tačno jedna tačka S za koju je EMBED Equation.3 , a time i tačno jedna tačka S za koju važi (1).

---------- OSTATAK TEKSTA NIJE PRIKAZAN. CEO RAD MOŽETE PREUZETI NA SAJTU. ---------- 

www.maturskiradovi.net 

 

MOŽETE NAS KONTAKTIRATI NA E-MAIL: maturskiradovi.net@gmail.com

 

besplatniseminarski.net Besplatni seminarski Maturski Diplomski Maturalni SEMINARSKI RAD , seminarski radovi download, seminarski rad besplatno, www.besplatniseminarski.net, Samo besplatni seminarski radovi, Seminarski rad bez placanja, naknada, sms-a, uslovljavanja.. proverite!